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Vision based Robotic Grasping

 Capture Camera
data to find
sufficiently good grasp
using robotic arms.

« Grasping using Single
image vs multiple
images vs Real time.
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Active Vision Policy for Grasping
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Active Vision Methods.

Franka Emika Panda
arm with Intel Real
Sense Kinect
mounted.

Collect object data
through camera
movement.

Capture and process
point cloud data.

Apply Active Vision
Policy to predict next
camera movement.
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Imitation Learning based Policy Prediction
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HAF based state vector fora 6 x 6 x 6 cm cube on the table. The blue square shows the square zone considered for object data and the yellow square
shows the zone considered for unexplored data. The length of the unexplored data square zone is 1.5 times that of the object square zone. The values represent the
maximum height among the points within each grid. These data are flattened and merged along with camera information for generate the state vector.
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Imitation learning-
Dataset Aggregation
(Dagger) to predict
the next camera
viewpoint direction.

Epsilon Optimal
Expert
demonstration for
imitation.

0° to 360 ° camera
movement space
with £5° increment.
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Comparison of 3D Feature Descriptors

Heights per rectangle cell

 Process raw RGB
point cloud using
feature descriptors

HAF (Height Accumulated Features) VFH (\/\i.ewpoint Feature Histogram) CVFH (Clustered Viewpoint Feature to enha_r_lce ObJeCt
Histogram) recognition

- 7 different features

- HAF, VFH, CVFH,
GASD,FPFH,GRSD,
ESF

GRSD (Global Radius-based Surface Descriptor)

ESF (Ensemble of Shape Features)

Img: HAF: Fischinger, David & Weiss, Astrid & Vincze, Markus. (2015). Learning grasps with topographic features.

V FH: Rusu, Radu Bogdan et al. “"Fast 3D recognition and pos e using the Viewpoint Feature Histogram.”

CVFH: Aldoma, A., Tombari, F., Rusu, R.B., & Vincze, M. (2012). OUR-CVFH - Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram for Object Recognition and 6 DOF

Pos e Es timation.

GASD: https://pcl.readthedocs.io/projects/tutorials/en/latest/gasd_estimation.html = -

FPFH: Rusu, Radu Bogdan, Nico Blodow and Michael Beetz. "Fast Point Feature Histograms (FPFH) for 3D registration.” WO rceste r P O IyteC h n IC I n St Itute
GRSD:Marton, Zoltan & P angercic, Dejan & Blodow, Nico & Kleinehellefort, J. & Beetz, Michael. (2010). General 3D modelling of novel objects froma single view.

ESF: Wohlkinger, Walter and Markus Vincze. "Ensemble of s hape functions for 3D object classification.”



Dataset

A subset of Yale-CMU-
Berkeley (YCB) Object Yale-CMU-Berkeley (YCB) Dataset
and Model Set

« Objects of daily life with
different shapes, sizes,
textures, weight and
rigidity

- Widely used for robotic
manipulation

benchmark

021 003 006 035 072-a

Img:https://www.ycbbenchmarks.com/
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Methodology and Evalution Metrics

Number of camera movement steps
taken to find Successful Grasp

« Mean cumulative reward and
standard deviation

« Model training time vs evaluation
time

« Percentage of Successful Grasps

« 3 cross-validation folds and test on
simulation

Fold

Training Objects and IDs

Testing Objects and IDs

009 gelatin box (8)

055 baseball (41)

072-a toy airplane (51)
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003 cracker box (2)

035 power drill (28)

006 mustard bottle (5)

021 bleach cleanser (19)

013 apple (12)

Weisshai Great White Shark (65)

004 sugar box (3)
005 tomato soup can (4)

[B¥]

055 baseball (41)

072-a toy airplane (51)
010 potted meat can (9)
003 cracker box (2)

005 tomato soup can (4)
006 mustard bottle (5)
021 bleach cleanser (19)

009 gelatin box (8)
035 power drill (28)
013 apple (12)

009 gelatin box (8)

055 baseball (41)

010 potted meat can (9)
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006 mustard bottle (5)
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072-a toy airplane (51)
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Train Results

Rewards
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Test Results
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 FPFH showing
optimal performance

FOLD2

and efficiency in training time.
« FPFH excelled in learning

curves and efficiency
across all folds.
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Thank You!
Any Questions?



Imitation Learning with Expert Demonstration
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11 Natarajan, S., Brown, G., & Calli, B. (2021). Grasp Synthesis for Novel Objects Using Heuristic-based and Data-driven Active Vision Methods.

Policy Prediction
during Testing

Robotic Grasping
(FRANKA Emika Panda Robot)
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Imitation Learning Reward Calculation

REINFORCEMENT LEARNING MODEL

maxPath- The maximum number of
State (Sy) steps allowed for an agent to achieve
its goal within an episode.

cStep- The current number of steps
the agent has taken in the current

Action -
Reward (Rt) (A1) episode.

« During training, the imitation

learning policy explores all
Environment possible camera movements.
« Clone imitates expert to achieve

maximum cumulative reward

Formula

Reward = maxPath—cStep
~ maxFPath

12 Img: https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-reinforcement-learning/ Worcester POIyteChr"C |nStItUte
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VFH, CVFH, FPFH

Step

Surface Normal
Estimation

Region Growing
Segmentation

Centroid
Computation

Viewpoint
Direction Check

Histogram
Calculation

Histogram
Concatenation

Normalization

VFH

Calculate the normals for
each point

Not used

Calculate the centroid of
the cloud

Determine the viewpoint
direction to the centroid

Compute histogram of
angles between normals
and viewpoint direction

Combine histograms with
centroid distances into a
large histogram

Optional to make
descriptor size invariant

CVFH

Calculate the normals for
each point

Segment cloud into
clusters based on
curvature

Compute centroid for
each cluster

Normals not pointing to
viewpoint are flipped

Compute histogram for
each cluster including
angles and distances

Concatenate histograms
from clusters, weighted
by cluster size

Histogram is normalized
for invariance to scale

FPFH

Calculate the normals
for each point

Not used

Not used

Not used

Compute local
histograms (SPFH)
within the neighborhood

Aggregate SPFHs of
neighbors to create the
FPFH

Not typically normalized
asitis a local feature
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HAF, GASD, GRSD, ESF
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Dagger (Dataset Aggregation)
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