
RBE/CS 549 Computer Vision
HW0 - Alohomora

Uthiralakshmi Sivaraman
Robotics Engineering Department

Worcester Polytechnic Institute
Worcester, MA, USA
usivaraman@wpi.edu

Using 1 late day

Abstract—The assignment consists of two parts: A)”Shake my
Boundary” where we use a probability based edge detection by
calculating Texture, Brightness and Color Map and gradients
along with Sobel and Canny Baselines B) ”Deep Dive on Deep
Learning ” where we compare multiple deep learning architec-
tures to classify objects from CIFAR10 BSDS500 dataset.

Index Terms—Edge Detection, Sobel, Canny, CIFAR10,
BSDS500, ResNet, DenseNet, ResNeXt

I. PHASE 1 : SHAKE MY BOUNDARY

Boundary detection is an interesting problem statement.
Given an image, we find the boundary based on how one
object transitions to another. Although boundary detection
seems straightforward for human being, it is difficult to achieve
boundary or edge detection from single image. Most of the
existing techniques use just intensities variations in the image
to obtain edges.

In this assignment, we use a probability based edge de-
tection which consists of three different parameters:texture,
brightness as well as color variations to detect boundaries
along with three different filters: Oriented Derivative of Gaus-
sian, Leung-Malik (LM), Gabor Filter-banks.

A. Oriented Derivative of Gaussian Filter Bank

We obtain the Oriented DOG Filter, Convolution of a
Sobel filter over a Gaussian kernel, rotating the kernel with
2 different scales and 16 orientations.

Equation of a Gaussian operator :

g(x, y) =
1

2πσ2
e−(x2+y2)/(2σ2)

B. Leung-Malik (LM) Filter Bank

Leung-malik filter-banks are formed by multi-scale, multi-
orientation filter-bank consisting 48 different filters. There are
three different types of Leung-malik filters. In first type of
filters, first and second derivative filters occur at the first 3
scales with an elongation factor of 3, i.e. sigmax = sigma
sigmay = 3 ∗ sigmax. In second type of filter, Leung-malik
small filters occurs at basic scales, sigma =1,

√
2, 2, 2

√
2. In

third type of filter, Leung-malik large filters occurs at basic
scales, sigma =

√
2, 2, 2

√
2, 4.

Leung-Malik filters are obtained by combining 4 different
combinations of filters: 1) First Derivative of Gaussian Filter 2)

Fig. 1. PbLite Edge Detection

Fig. 2. Gaussian Filter and its derivative

Second Derivative of Gaussian Filter 3) Laplacian of Gaussian
Filter 4) Gaussian Filter

C. Gabor Filter Bank

Gabor filters mostly occur in the human visual system.
Gaussian kernel function modulated by a sinusoidal plane
wave. It analyses whether there is any specific frequency
change.

D. Texton Map, Brightness Map, Color Map

1) Texton Map: We find Texton Map by capturing the
texture changes in the image and cluster the texture variations



Fig. 3. Derivative of Gaussian in 2 Dimensions

Fig. 4. Oriented DOG Filter-bank

Fig. 5. Leung-Malik Small Filter-bank

Fig. 6. Leung-Malik Large Filter-bank

Fig. 7. Leung-Malik Filter-bank

Fig. 8. Gabor Filter-bank

with an N-dimensional vector for clustering all the responses
at all pixels in the image for K textons using Kmeans.

2) Brightness Map: We find Brightness Map by capturing
the brightness change in the image and cluster the bright-
ness values for gray-scale equivalent of a color image using
Kmeans clustering by choosing a set of cluster bins.

3) Color Map: We find Color Map by capturing color
changes or chrominance content in the image and cluster the
color values (3 values per pixel (RGB color channels)) using
Kmeans clustering by choosing a set of cluster bins.

E. Half Disc Masks

Half Disc Masks refer to pairs of binary images of Half-
Discs using equation of circles constraining either x and y or
both within a particular range and variation of angles.



Fig. 9. Image 1 (a) Texton Map (b )Brightness Map (c) Color Map

Fig. 10. Image 2 (a) Texton Map (b) Brightness Map (c) Color Map

Fig. 11. Image 3 (a) Texton Map (b) Brightness Map (c) Color Map

Fig. 12. Image 4 (a) Texton Map (b) Brightness Map (c) Color Map

Fig. 13. Image 5 (a) Texton Map (b) Brightness Map (c) Color Map

Fig. 14. Image 6 (a) Texton Map (b) Brightness Map (c) Color Map

Fig. 15. Image 7 (a) Texton Map (b) Brightness Map (c) Color Map

Fig. 16. Image 8 (a) Texton Map (b) Brightness Map (c) Color Map

Fig. 17. Image 9 (a) Texton Map (b) Brightness Map (c) Color Map

Fig. 18. Image 10 (a) Texton Map (b) Brightness Map (c) Color Map

Fig. 19. Image 1 (a) Texton Gradient (b) Brightness Gradient (c) Color
Gradient

Fig. 20. Image 2 (a) Texton Gradient (b)Brightness Gradient (c) Color
Gradient

Fig. 21. Image 3 (a) Texton Gradient (b) Brightness Gradient (c) Color
Gradient

Fig. 22. Image 4 (a) Texton Gradient (b) Brightness Gradient (c) Color
Gradient



Fig. 23. Image 5 (a) Texton Gradient (b) Brightness Gradient (c) Color
Gradient

Fig. 24. Image 6 (a) Texton Gradient (b) Brightness Gradient (c) Color
Gradient

Fig. 25. Image 7 (a) Texton Gradient (b) Brightness Gradient (c) Color
Gradient

Fig. 26. Image 8 (a) Texton Gradient (b) Brightness Gradient (c) Color
Gradient

Fig. 27. Image 9 (a) Texton Gradient (b) Brightness Gradient (c) Color
Gradient

Fig. 28. Image 10 (a) Texton Gradient (b) Brightness Gradient (c) Color
Gradient

Fig. 29. Image 1 (a) Canny (b) Sobel (c) Pblite

Fig. 30. Image 2 (a) Canny (b) Sobel (c) Pblite

Fig. 31. Image 3 (a) Canny (b) Sobel (c) Pblite

Fig. 32. Image 4 (a) Canny (b) Sobel (c) Pblite

Fig. 33. Image 5 (a) Canny (b) Sobel (c) Pblite

Fig. 34. Image 6 (a) Canny (b) Sobel (c) Pblite

Fig. 35. Image 7 (a) Canny (b) Sobel (c) Pblite

Fig. 36. Image 8 (a) Canny (b) Sobel (c) Pblite



Fig. 37. Image 9 (a) Canny (b) Sobel (c) Pblite

Fig. 38. Image 10 (a) Canny (b) Sobel (c) Pblite

F. Chi Square Distance

Chi-square distance is a statistical method to measure sim-
ilarity between 2 feature matrices (h, g) and used in many
applications like similar image retrieval, image texture, feature
extractions. It has the property of distributional equivalence,
meaning that it ensures that the distances between rows and
columns are invariant. We use chi-sqaure distance to find the
various gradient values by comparing each map with particular
bins against half disk filter bank.

χ2(g, h) =
1

2

K∑
i=1

(gi − hi)
2

gi + hi

G. K-means Clustering

K-means algorithm clusters data by trying to separate sam-
ples in group of equal variance by minimizing inertia or within
cluster sum of squares.

Kmeans algorithm divides a set of N samples X into K
disjoint clusters C, each described by mean ui of samples in
the cluster.

We first start with initialising the number of clusters and
randomly initialise the centroid within the clusters and com-
pute new centroids of each cluster by assigning each point to
its closest centroid until the centroid positions remain constant
and unaffected by further iterations.

H. Probability based detection

As a final step, we combine all the filter data to obtain
texture brightness and color gradients by applying chi square
distances. In order to obtain the final edge from these gradi-
ents, we use a weighted sum over Sobel and Canny baseline
images for the images. The end result, is weighted sum of
gradients over these baselines.

Although many approaches just use either Sobel or canny
edge detectors to find edges in a image which is also Incor-
porated in many packages available open source online, it is

found that on using Sobel and Canny edge detectors, we find
the edges of all the objects and variations present in the image.
IN this assignment we use an rigorous approach to use various
filter operations on the image and finally detect the edges of
particular objects in the image as we can see the difference as
shown in Fig. 37.

II. PHASE 2 : DEEP DIVE INTO DEEP LEARNING
We compare multiple neural network architectures by vary-

ing the number of parameters to analyse the training and
testing accuracy and loss values for training with CIFAR-10
data-set which consists of 60000 32*32 color images in 10
classes with 6000 image per class. The training and testing
data-set are split as having 50000 and 10000 images respec-
tively. First, I started my implemented with Convolution neural
network to train for minimum epochs. I have used ADAM
optimizer and Cross Entropy function for computing loss and
Learning rate of 1e−2 for all the network architecture. I have
trained and tested the models using Cluster- turing.wpi.edu.
For simple CNN architecture, I have not used any standard-
ization or normalization and for all other variations: ResNet18,
ResNet34, DenseNet, ResNeXt. I have used annotations and
standardization from torchvision.transforms.

Normalisation and standardization:
• 1. CenterCrop(10)
• 2. Normalise((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
• 3. RandomRotation((30,70)
One of the key observations I made while using different

combinations of annotations is that, it has direct impact on the
output filter size of the network and I have used MaxPool2d()
and AvgPool2d() functions to adjust the filter size input to the
final classifier layer.

Sno Model No of Epochs Train Accuracy Test Accuracy

1. CNN 477 77.78 58.82

2. ResNet18 150 95.99 43.22

3. ResNet34 150 91.24 45.56

4. DenseNet 1200 70.06 45.15

5. ResNeXt 7 45.41 10.88

TABLE I
DEEP LEARNING ARCHITECTURES AND ACCURACY

With respect to computational time, ResNext took longer
time to train while basic and Resnet18 were faster to train. It
was a great learning process to try different annotations and
various layers for training the network. Further work would
be on improving test accuracy even over shorter training.

REFERENCES

[1] https://medium.com/@sergioalves94/deep-learning-in-pytorch-with-cifar-
10-dataset-858b504a6b54.

[2] https://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm.
[3] https://github.com/miraclewkf/ResNeXt-PyTorch.
[4] Arbelaez, Pablo, et al. ”Contour detection and hierarchical image segmen-

tation.” IEEE transactions on pattern analysis and machine intelligence
33.5 (2010): 898-916.

[5] https://en.wikipedia.org/wiki/Gaussianf ilter



Fig. 39. Test Confusion Matrix for CNN Basic Layer

Fig. 40. Test Confusion Matrix HeatMap for CNN Basic Layer

Fig. 41. Training Accuracy for DenseNet Layer

Fig. 42. Training Loss for DenseNet Layer

Fig. 43. Test Confusion Matrix for DenseNet Layer

Fig. 44. Test Confusion Matrix HeatMap for DenseNet Layer



Fig. 45. Training Accuracy for ResNet 18 Layer

Fig. 46. Training Loss for ResNet 18 Layer

Fig. 47. Test Confusion Matrix for ResNet 18 Layer

Fig. 48. Test Confusion Matrix HeatMap for ResNet 18 Layer

Fig. 49. Training Accuracy for ResNet 34 Layer

Fig. 50. Training Loss for ResNet 34 Layer



Fig. 51. Test Confusion Matrix for ResNet 34 Layer

Fig. 52. Test Confusion Matrix HeatMap for ResNet 34 Layer

Fig. 53. Training Accuracy for ResNeXt Layer

Fig. 54. Training Loss for ResNeXt Layer

Fig. 55. Test Confusion Matrix for ResNeXt Layer

Fig. 56. Test Confusion Matrix HeatMap for ResNeXt Layer



Fig. 57. Basic Model Architecture

Fig. 58. ResNet18 Model Architecture

Fig. 59. ResNet34 Model Architecture



Fig. 60. ResNeXt Model Architecture


