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Abstract—The majority of robotic grasping algorithms rely
on a single image of the object, which makes the algorithm’s
performance highly dependent on the camera’s viewpoint and
significantly limits its effectiveness. Active vision enables robots
to intelligently adjust their sensors, facilitating quick and reliable
interactions with unknown objects in uncertain conditions. Our
approach focuses on identifying the most efficient subsequent
viewpoint for data collection in vision-based grasping. To opti-
mize a vision-based policy for robotic grasping, choosing the most
effective 3D point cloud feature extraction technique is crucial.
These techniques convert raw 3D spatial data into structured
forms that learning algorithms can use to make well-informed
decisions about object manipulation. Our research compares
several global feature representations to find the most suitable
candidate for developing an active vision policy using a Dagger-
like imitation learning algorithms.

Index Terms—Robot grasping, vision-based grasping, Active
Vision, Imitation Learning, Dataset Aggregation - Dagger, 3D
point cloud feature extraction, object manipulation

I. INTRODUCTION

Robotic grasping is a fundamental capability in robotic
arm applications, particularly in service-oriented scenarios.
Traditional grasping algorithms typically rely on data derived
from a single viewpoint to generate grasps. However, these
algorithms often encounter difficulties when the camera’s
viewpoint differs from those used during training. This dis-
crepancy can significantly hinder grasp synthesis, especially
when certain graspable features of an object are obscured or
self-occluded from the camera’s current viewpoint.

Historically, vision-based grasping has been constrained
by these limitations, as noted in studies such as those by
Fischinger et al [2], who discuss the implications of relying
on single viewpoints. To address these challenges, recent ad-
vancements have incorporated active vision frameworks. These
systems enhance data acquisition by allowing the camera
to move dynamically around the object, thereby broadening
the observational perspectives and improving grasp synthesis
[3]. One innovative approach involves heuristic-based methods
for optimizing camera viewpoints to ensure comprehensive
coverage and focused observation of the target object. For
example, Aldoma et al. [4] explored how oriented and repeat-
able clustered viewpoint feature histograms can significantly
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aid in recognizing and estimating the pose of objects, thereby
facilitating more effective grasping strategies.

Active vision necessitates complex optimizations across
various dimensions including camera motion, robot trajectory,
and data analysis. This project prioritizes minimizing camera
movement to quickly and efficiently identify viable grasps
for unknown objects. By reducing the travel distance of the
camera, we aim to decrease the time required to establish a
functional grasp, optimizing the process for practical robotic
applications [6], [7]. This approach aligns with the practical
needs of service robotics, where speed and reliability are



paramount. By integrating these considerations, our method-
ology provides a robust framework for enhancing robotic
grasping capabilities in real-world applications.

II. BACKGROUND

A. Advanced Strategies for Robot Grasping

Robotic grasping in unpredictable environments benefits
immensely from active vision techniques. These approaches
enable robots to adapt to changing conditions and optimize
their grasp. Several methods focus on synthesizing grasps from
a single image, while others tackle grasping in cluttered spaces
without updating their strategies based on new information.
Some methods use cost-effective imaging solutions to perform
precise grasps but fail with new or deformed objects due to
their dependency on predefined templates. Machine learning
is also employed to determine optimal grasp points directly
from image data, though such methods often miss out on
utilizing historical image data which could further refine
their processes. Active vision elevates these techniques by
dynamically collecting data through scene exploration, thus
enhancing the grasp quality and algorithm efficiency.

B. Expanding the Scope of Active Vision

Active vision is applicable well beyond grasping, influenc-
ing the design of non-grasping algorithms as well. [2]employs
active vision for 3D scanning, not for grasping, and aims
to scan new objects as quickly as possible, unlike our goal
of rapid grasping. Similarly, [8] utilizes active vision for 3D
reconstruction, employing an information gain metric. In our
project, we want to minimize search time as well as maximize
grasp quality and use expert solutions within optimal space to
enhance a more realistic grasping scenario.

C. Reinforcement Learning

Reinforcement Learning (RL) [9]is utilized when traditional
supervised or unsupervised machine learning methods do not
fit a problem’s requirements. It is especially beneficial for con-
tinuous, non-episodic challenges, which is why it has become
widely adopted in robotics. RL tackles a range of problems
that make it well-suited for these applications. Advances in
deep RL have expanded its capability into continuous action
spaces by applying function approximation not just across state
spaces but also action spaces. This allows RL to evaluate the
potential rewards of continuous actions within these spaces,
diverging from the traditional method which involves selecting
from a set of discrete actions. Recent studies have applied RL
to enhance active vision for robotic grasping without expert
demonstrations. By paralleling training sessions and signifi-
cantly enhancing the data collected, these systems compensate
for the absence of expert input. However, we now have the
capability to integrate expert demonstrations into the training
process.

D. Expert Training in Reinforcement Learning

In reinforcement learning, [9] [10]expert demonstrations are
leveraged primarily for initial training, to inform model design
with human-understandable reasoning, to establish optimiza-
tion criteria, and to enhance exploration. Our research utilizes
these aspects, except for legibility. illustrate that even subop-
timal expert demonstrations can significantly enhance training
speed and accuracy. We address common RL challenges,
such as exploding gradients and vanishing gradients where
predictions become overly confident and resistant to contra-
dictory evidence—as observed in various neural networks but
particularly problematic in RL due to the dependency of the
reward function on network predictions.

E. Epsilon Optimal Demonstrations

Expert demonstrations are a foundational element in the
field of robotics and artificial intelligence, facilitating the
transfer of complex task execution capabilities to robotic sys-
tems. Human experts perform a variety of tasks, ranging from
simple object manipulation to intricate navigation maneuvers,
in the presence of robots. The robots, through observation,
compile a detailed blueprint of task execution based on these
expert demonstrations. This method circumvents the need for
extensive programming for each specific task, which is both
impractical and labor-intensive.

The efficacy of expert demonstrations lies in their ability to
condense human expertise into a format easily digestible by
robotic systems. This accelerates the robot’s learning curve,
enabling performance that closely mirrors human dexterity.
The concept of epsilon-optimal demonstrations introduces an
advanced approach where the demonstrations provided are
nearly optimal, falling within a small epsilon margin of error.
This ensures that not only are the tasks performed correctly,
but they are also executed in the most efficient and effective
manner possible.

In practical applications, epsilon-optimal demonstrations
have proven to significantly speed up the learning process for
robots, allowing them to quickly adapt to a wide range of
tasks. This method has been particularly impactful in service
robotics, where tasks require a high degree of adaptability and
human-like decision-making. As robots continue to integrate
into diverse sectors, the role of epsilon-optimal demonstrations
in pushing the boundaries of what is achievable in robotics is
increasingly recognized and valued in contemporary research.

Applying expert demonstrations in real-world scenarios has
enabled robots to tackle a diverse array of challenges, from
assembly line tasks to domestic service roles, where the quality
and nuance of task performance are paramount. As robots con-
tinue to permeate various sectors, the role of epsilon-optimal
demonstrations in advancing the state-of-the-art in robotics is
increasingly becoming a focal point of contemporary research.

1) Optimal path finding as Expert demonstration: As illus-
trated in Figure 5 the problem involves finding the shortest
path along a view sphere to view two graspable points on an
object point cloud. A dense network of points is created on
the view sphere using a Fibonacci lattice to facilitate this. The
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process involves three main steps: calculating visibility regions
for each point on the object, identifying pairs of points that
can form a grasp based on specific criteria, and computing
the shortest distances between viewpoints that can view these
graspable pairs. Once these distances are recorded, an optimal
path is determined through brute force search, starting from
the camera’s initial position and calculating the shortest route
connecting the viewpoints necessary to view at least one valid
grasp along the path, thereby determining the most efficient
viewing sequence.

F. Behavioral Cloning and Dataset Aggregation

[11] Behavioral Cloning (BC) is a form of supervised
learning where the model is trained to mimic expert behavior.
In this context, the “expert” refers to the optimal path finder
algorithm that determines the best camera viewpoints for
object manipulation tasks. By using the decisions made by
this expert system as a dataset, the RL model learns to
replicate these choices. BC effectively jump-starts the model’s
training by providing it with high-quality, expert-level decision
patterns from the get-go. However, BC’s main limitation is
that it doesn’t account for the model’s interactions with the
environment, which can lead to discrepancies between the
training scenarios and real-world applications.

Dataset Aggregation (DAgger) [12] addresses the limita-
tions of BC by iteratively refining the training dataset. DAgger
involves the model making decisions in the simulated envi-
ronment, after which the expert reviews these decisions. If
the model’s decisions deviate from what the expert deems
optimal, these instances are added to the training dataset with
the correct actions specified by the expert. This process allows
the model to learn from its mistakes in a controlled manner,
gradually aligning its decision-making process with that of the
expert’s. DAgger ensures that the model is not only trained
on a static set of expert decisions but also learns to correct its
course based on dynamic feedback from the expert regarding
its actions.

III. OPTIMIZATION OF 3D POINT CLOUD FEATURE
EXTRACTION TECHNIQUES

In the pursuit of optimizing a vision-based policy for robotic
grasping, selecting the most effective 3D point cloud feature

extraction technique is crucial. These techniques transform raw
3D spatial data into a structured form that enables learning
algorithms to interpret and make informed decisions regarding
object manipulation. Some earlier works [4]have shown that
the introduction of 3D feature descriptors has significantly
improved the efficiency of the grasping algorithm.

A. Feature Extraction Techniques

This section details several key feature extraction tech-
niques, each uniquely contributing to the enhancement of
robotic grasping systems by providing crucial data represen-
tations.

1) Height Accumulated Features (HAF): [13] Developed
by Fischinger and Vincze and later adapted by Calli et al.,
Height Accumulated Features (HAF) generate a grid-based
representation of the scene. This representation accumulates
the maximum height within each grid cell, thereby creating a
feature map that effectively captures the vertical structure of
objects and the spatial relationship of their surrounding areas.
This technique is particularly beneficial for scenarios where
the vertical profile of objects dictates their graspability.

2) Viewpoint Feature Histogram (VFH): [3] The Viewpoint
Feature Histogram (VFH) focuses on capturing the viewpoint
orientation of the object relative to the sensor. This histogram-
based descriptor not only encodes the shape of the object but
also its orientation, making it highly useful for both object
recognition and precise pose estimation tasks in cluttered or
densely populated environments.

3) Clustered Viewpoint Feature Histogram (CVFH): [4]
Building on the principles of VFH, the Clustered Viewpoint
Feature Histogram (CVFH) extends its capabilities by incor-
porating the local geometry of object points and their spatial
layout relative to a specific viewpoint. This method offers a
descriptor that is sensitive to the object’s orientation and can
effectively be clustered to recognize and differentiate similar
shapes in varying conditions.

4) Global Aligned Spatial Distribution (GASD): [14] The
Global Aligned Spatial Distribution (GASD) technique pro-
vides a spatially-aligned, comprehensive description of the
entire point cloud. By capturing the global distribution of
points, GASD enhances robustness against varying object
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orientations and can be particularly effective in environments
where objects of interest present diverse rotational forms.

5) Global Radius-based Surface Descriptor (GRSD): [15]
The Global Radius-based Surface Descriptor (GRSD) quanti-
fies the distribution of surface normals within a global context.
This descriptor is adept at discerning between different object
textures and geometries, proving invaluable for distinguishing
between objects that have subtle physical differences but
significant textural or geometric variations.

6) Ensemble of Shape Functions (ESF): [16] The En-
semble of Shape Functions (ESF) aggregates multiple shape
functions to globally describe the point cloud. This approach
offers a comprehensive understanding of an object’s overall
shape, independent of its size and orientation, making it
suitable for applications requiring a broad overview of object
forms without detailed geometric fidelity.

7) Fast Point Feature Histograms (FPFH): [7] Fast Point
Feature Histograms (FPFH) focus on computing a local
histogram of features based on the relative orientations of
surface normals. Despite its rapid computation, FPFH provides
a detailed and descriptive representation of local geometry,
suitable for tasks where speed and efficiency are critical, such
as in real-time grasping applications.

Each of these techniques plays a pivotal role in enhancing
the capability of robotic arms to perform precise and reliable

grasps, tailored to the specific demands of varied application
environments.

IV. METHODOLOGY

Figure 7 illustrates the overall workflow of this project.
GsubsectionData Acquisition and Preprocessing The initial
stage in our pipeline is the acquisition of a 3D RGB point
cloud. This rich dataset captures the full spectrum of the
scene, containing both the target objects and the surrounding
space yet to be explored. The point cloud is processed to
segregate the two key components: the object point cloud and
the unexplored point cloud. This segmentation is critical, as
it distinguishes between the already scanned areas and those
that require further examination.

A. Point Cloud Processing Overview

The initial handling of point cloud data involves downsam-
pling the data captured by the camera, which serves to reduce
sensor noise and accelerate subsequent processing phases. This
preparatory step is depicted in Figure 6, showcasing how the
environment appears to the camera after the data has been
simplified. Identifying unexplored areas around the object
is crucial for effective grasp synthesis and to guide active
vision strategies. To achieve this, the vicinity of the object
is populated with an evenly spaced point cloud. Each point
within this cloud is then sequentially assessed to determine
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if it is occluded, avoiding the computationally intensive ray-
tracing method by leveraging the structured nature of the point
cloud.

Occlusion detection utilizes a projection technique where
3D points are mapped onto the image plane using the trans-
formation:

KX

X
P o

where X, represents the projected pixel coordinates, X =
(70,30, 20)T is a 3D point, and K is the intrinsic camera
matrix expressed as:

fx 0 ppz
K=10 fy ppy
0 0 1

This process marks points as occluded if their depth, zg,
exceeds the depth at X,,. The visual representation of these
unexplored and occluded areas is dynamically updated with
every new camera viewpoint, continually integrating new point
cloud data with existing environmental information to refine
the mapping of object data and unexplored regions.

B. Feature Extraction and State Vector Representation

Once the object and unexplored regions are defined, we
proceed to the feature extraction phase. Utilizing a suite
of seven feature extraction techniques, we decode the point
clouds into a structured state vector representation. These
feature vectors articulate the spatial and geometrical properties
of the environment, translating complex 3D information into
a format that is conducive to algorithmic interpretation.

Additionally, the state vector encapsulates the current cam-
era position, which provides context regarding the sensor’s
perspective relative to the objects and unexplored areas. By
integrating the camera position with the feature vector data,
we form a comprehensive state vector that embodies all the
critical information required for subsequent decision-making
processes.

In our framework for facilitating data-driven policies in
robotic grasping, we employ a uniform state vector as the foun-
dational input. This state vector encapsulates the essence of the
object’s three-dimensional spatial information. To construct
such a vector, a critical step is the selection and application of
an appropriate feature extraction technique that can effectively
condense the raw point cloud data.

One exemplary method is the Height Accumulated Features
(HAF), which exemplifies the process of converting point
clouds into a structured and informative representation. Origi-
nally introduced by Fischinger and Vincze [2]and later applied
in the work of Calli et al. [17], the HAF approach involves
segmenting the point cloud into a grid and recording the
maximum height within each cell. This results in a feature map
that distinctively portrays the object’s verticality, an attribute
often crucial in determining the feasibility of a grasp.

Our experimental evaluations explored the implications of



varying the grid resolution, with both 5x5 and 7x7 config-
urations tested for their impact on the learning algorithm’s
performance. Despite both configurations exhibiting compara-
ble results, the 5x5 grid was chosen, favoring computational
efficiency without significant loss of performance. The state
vector thus consists of the flattened HAF-derived height maps
combined with the polar and azimuthal coordinates of the
camera, yielding a vector dimension of 2n? + 2, where n is
the grid size.

While HAF serves as a prime example in our study, the
methodology applies broadly to other feature extraction tech-
niques such as VFH, CVFH, GASD, GRSD, ESF, and FPFH.
Each possesses unique attributes that render them more or less
suitable for specific robotic grasping tasks. The process of
feature selection and vectorization is pivotal, as it translates
the complexity of the object’s physical characteristics into a
form that is amenable to algorithmic analysis and learning,
thus influencing the system’s grasp synthesis capabilities.

C. Imitation Learning and Training

The core of our training mechanism is based on imitation
learning, specifically utilizing the DAgger (Dataset Aggrega-
tion) algorithm. The system is fed the state vector representa-
tion, and through the imitation learning framework, it learns
to mimic expert behavior. The training is driven by a reward
model that seeks to optimize cumulative rewards over time.
This model favors actions that align closely with the epsilon-
optimal demonstrations provided by human experts, which
have been pre-established as nearly optimal paths or solutions.

D. Testing and Grasp Synthesis

In the testing phase, a pre-trained clone predicts the next op-
timal camera movement. This prediction aims to enhance the
robot’s understanding of the scene, leading to more informed
decision-making in subsequent actions.

Simultaneously, a grasp synthesis algorithm is employed.
This algorithm processes the current state vector to generate
viable grasp candidates. The algorithm’s effectiveness hinges
on its ability to translate the learned imitation model and the
intricacies of the feature representations into physical actions
that the robotic system can perform. Grasp synthesis

V. EXPERIMENTAL SETUP AND VALIDATION
A. Dataset and Object Selection

The experimental validation of our robotic grasping algo-
rithm was conducted using a carefully selected subset from
the Yale-CMU-Berkeley (YCB) Object and Model Set. This
dataset is a standardized collection widely recognized for its
diversity and relevance in robotic manipulation benchmarks. It
includes objects of daily life that vary in shape, size, texture,
weight, and rigidity, providing a robust foundation for testing
under realistic conditions.

For this study, we chose 11 items from the YCB dataset to
cover a broad spectrum of shapes and symmetry of the objects
by doing a comprehensive analysis of these objects in a Fold
wise we test and train on different subsets of objects for the
same feature to understand the implications.

B. Training Procedure

The training of our neural network employed the Imita-
tion Learning approach using the Stable Baselines’ DAgger
(Dataset Aggregation) function [12]. This method involves
training the network to imitate epsilon-optimal paths, which
are near-optimal solutions derived from our predefined criteria.
The training continued until the network achieved conver-
gence, indicating that it had effectively learned the desired
grasping behaviors.

C. Simulation Testing and Cross-Validation

Following training, the network’s performance was eval-
vated in a simulated environment that mimics real-world
conditions. This testing phase is crucial for assessing the
robustness and reliability of the learned grasping strategies
before any real-world deployment.

To comprehensively evaluate the effectiveness of the trained
network, we conducted a complete cross-validation on the 11
selected objects. This involved testing each object multiple
times under varying conditions to ensure that the network’s
performance was not only effective but also consistent across
different instances. The cross-validation process focused on
different feature types of the objects, allowing us to assess the
impact of shape, size, texture, and other characteristics on the
performance of the grasping algorithm.

This methodical approach to training and validation ensures
that our findings are both robust and replaceable, providing
valuable insights into the capabilities and limitations of the
current state-of-the-art robotic grasping technologies.

VI. RESULTS AND DISCUSSION
A. Training and Testing Configurations

The experimental setup involved four-folds, each with a
distinct combination of training and testing objects, as delin-
eated in Table 1. The diversity of objects aims to assess the
adaptability and robustness of different feature descriptors in
a machine-learning context.

B. Computational Performance

An analysis of the computational performance revealed
significant disparities in training and evaluation times across
different features. In Folds 1 and 3, where a total of 8000
training steps were employed, certain features demonstrated
efficiency in both learning and computation. Conversely, Fold
2, with 1500 steps, saw increased times, highlighting a crit-
ical balance between the number of steps and computational
demand. In fold 4, we use a in-between number of training
steps of 5500.

C. Feature Analysis

Across all folds, the plots demonstrate varying efficiency
and efficacy levels for the seven features in question. Features
like HAF and FPFH showed a steep learning curve in the plots,
indicating a rapid attainment of a high success rate, which
corresponds to their lower computational times as observed in
the tabulated results. In contrast, features such as CVFH and
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GASD required more iterations to reach similar success rates,
as reflected in their longer computational times.

D. Consistency Across Folds

When considering the consistency across folds, features that
consistently performed well in both the plots and the tabulated
data were indicative of a stable and reliable performance. For
instance, FPFH not only showed a quick convergence in the
plots but also had the fastest evaluation pre-train times in Fold
1, suggesting a high degree of computational efficiency. Also,
we observe that HAF was consistently performing better on
training and in FOLD4 it is seen that HAF is performing well
in testing unknown objects too.

E. Comparative Evaluation

The comparative evaluation of features indicated that the
feature descriptors’ performance is highly context-dependent.
However, taking into account both the learning curves from

Fold

Training Objects and IDs

Testing Objects and IDs

009 gelatin box (8)

055 baseball (41)

072-a toy airplane (51)

010 potted meat can (9)

003 cracker box (2)

035 power drill (28)

006 mustard bottle (5)

021 bleach cleanser (19)

013 apple (12)

Weisshai Great White Shark (65)

004 sugar box (3)
005 tomato soup can (4)

055 baseball (41)

072-a toy airplane (51)
010 potted meat can (9)
003 cracker box (2)

005 tomato soup can (4)
006 mustard bottle (5)
021 bleach cleanser (19)

009 gelatin box (8)
035 power drill (28)
013 apple (12)

009 gelatin box (8)

055 baseball (41)

010 potted meat can (9)
003 cracker box (2)

035 power drill (28)
005 tomato soup can (4)
006 mustard bottle (5)
021 bleach cleanser (19)
013 apple (12)

072-a toy airplane (51)
Weisshai Great White Shark (65)

009 gelatin box (8)

072-a toy airplane (51)

010 potted meat can (9)

003 cracker box (2)

035 power drill (28)

005 tomato soup can (4)

006 mustard bottle (5)

013 apple (12)

Weisshai Great White Shark (65)

055 baseball (41)
021 bleach cleanser (19)

TABLE I: Training and testing objects across different folds.

the plots and the computational times from the tables, FPFH
stands out as the feature with a superior balance of high
success rate and computational efficiency across all three folds.



F. Failure Cases Analysis

Despite the overall successful outcomes highlighted in the
previous sections, it is crucial to address and analyze the
instances of failure as depicted in the plots. These cases offer
invaluable insights into the limitations of the current feature
set and the challenges faced during the project’s execution.

In Fold 1, while the success rate for most features rapidly
increased, certain features like GRSD plateaued early, indicat-
ing a potential mismatch between feature descriptors and the
training objects. Similarly, in Fold 2, the slower increase in
success rates for features such as CVFH could be attributed
to the reduced number of training steps, which may not have
been sufficient for the feature to capture the complexity of the
objects effectively.

Fold 3’s failure cases, while fewer in comparison to Fold
2, still present critical learning opportunities. For instance, the
consistent underperformance of GASD, even with an increased
number of training steps, prompts further investigation into the
adequacy of the feature’s design for the types of objects in the
dataset.

Moreover, the failure cases across all folds suggest that
while some features have a high success rate for specific
objects, they may not generalize well across different object
classes. This particular insight underscores the necessity for a
diverse and comprehensive training set to build a robust feature
set for real-world applications.

Our project’s exploration into object recognition and ma-
nipulation revealed critical limitations in the features tested.
Despite varying training steps across Folds 1 to 4, certain
test objects consistently evaded a successful grasp by all
features. This consistent lack of success suggests a funda-
mental mismatch between the current feature set and specific
object properties, underscoring the need for more sophisticated
feature engineering. The persistent failures across different
training conditions highlight the importance of developing a
more robust and versatile feature set capable of handling a
diverse range of objects. This study’s failure cases prompt
further research into advanced feature descriptors to address
these gaps and improve grasp success in robotic applications.

In the evaluation of computational efficiency for imitation
learning in robotic grasping simulations, different GPUs ex-
hibit significant variance in training times for a fixed number
of steps. Specifically, the NVIDIA RTX 3070 Ti processes
8000 training steps in approximately 8 hours, resulting in a cal-
culated time of about 0.5 hours for 500 steps. Conversely, the
NVIDIA GTX 1650, a less powerful GPU, takes a full 5 hours
to complete just 500 steps, indicating its lower efficiency for
such computationally intensive tasks. Meanwhile, the NVIDIA
RTX 4070, despite its advanced architecture, requires 16 hours
to complete 8000 steps, leading to a training time of 1 hour
for 500 steps. These differences underscore the importance of
selecting appropriate hardware based on the specific demands
and scale of training in robotic simulations to optimize both
time and resource utilization.

GPU Model Maximum Training Steps Training Time for 500 Steps

RTX3070Ti 9000 0.5 hours

GTX 1650 2500 Shours

RTX 4070 9000 Thour

Fig. 9: Comparison of Imitation Learning training time on
GPU Hardware

VII. CONCLUSION

Considering the overall performance in terms of learning
efficiency, computational speed, and consistency across dif-
ferent training/testing conditions, FPFH is concluded to be
the most efficient feature among the seven evaluated with
HAF being the second best. FPFH’s rapid learning curve and
quick evaluation times underscore its potential for applications
where both performance and computational resources are of
paramount concern. HAF was suited for applications when
the camera is located on top of the object, in applications like
Robotics grasping.

A. Future Work

Future investigations should further explore the scalability
of FPFH and HAF features across a broader range of objects
and conditions. Additionally, studies could focus on optimiz-
ing training strategies to further reduce computational times
without compromising the performance quality.
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